Modeling for Climate Variability

Dave Sauchyn, Ph.D., P. Geo.

Prairie Adaptation Research Collaborative, University of Regina

AESRD Environmental Modeling Workshop, Edmonton, 13-14 March 2013

The **Prairie Adaptation Research Collaborative** (PARC) is a Research Institute based at the University of Regina. It was created as partnership of the governments of Canada, **Alberta**, Saskatchewan and Manitoba mandated to pursue climate change impacts and adaptation research in the Prairie Provinces.

PARC

Major Initiatives (\$Ms)

- 2000-2006: C-CIARN Prairies
- 2004-2008: Alberta Vulnerability Assessment Project, AESRD
- 2006-2010: Saskatchewan Climate Impact Assessment
- 2006-2008: Prairies Chapter, From Impacts to Adaptation
- 2008-2011: Prairies RAC **AESRD**
- 2011-2016: VACEA project Oldman River Basin

Constructing Climate Change Scenarios

Year

Selecting Future Climates

From: Guide for Assessment of Hydrologic Effects of Climate Change in Ontario

Annual streamflow with current (1961-90) and future (2041-2070) climate

From: Guide for Assessment of Hydrologic Effects of Climate Change in Ontario

Climate Change

The Pacific Decadal Oscillation (PDO) is a major factor controlling Canadian Prairie precipitation and streamflow

Cooking Lake, Alberta, 19 Sept 2008

Probabilities of two consecutive years of 25th and 75th quartile flows by PDO phase - Saskatchewan River

Streamflow record	25 th + PDO	25 th – PDO	75 th + PDO	75 th – PDO
Actual Oldman R. near Lethbridge [05AD007]	0.196	0.000	0.020	0.146
Naturalized S. Saskatchewan R. at Medicine Hat	0.200	0.000	0.022	0.171
Actual S. Saskatchewan R. at Medicine Hat [05AJ001]	0.196	0.000	0.020	0.171
Naturalized Elbow R. below Glenmore Dam	0.200	0.000	0.044	0.146
Actual Elbow R. below Glenmore Dam [05BJ001]	0.176	0.048	0.059	0.190
Naturalized Bow R. at Calgary	0.178	0.000	0.044	0.195
Actual Bow R. at Calgary [05BH004]	0.176	0.024	0.039	0.195
Naturalized Spray R. at Banff	0.133	0.000	0.067	0.122
Naturalized N. Saskatchewan R. at Edmonton	0.118	0.024	0.098	0.119
Actual N. Saskatchewan R. at Edmonton [05DF001]	0.118	0.024	0.078	0.122
Actual N. Saskatchewan R. at Prince Albert, SK [05GG001]	0.137	0.049	0.039	0.122
Actual Saskatchewan R. at the Pas, MB [05KJ001]	0.137	0.025	0.059	0.175
Mean	0.149	0.015	0.043	0.135

Expected annual peak flow by PDO phase for 25 gauging stations

Gurrapu et al. 2012

Mean Annual Flow (m³sec⁻¹) North Saskatchewan River, 1063-2006

St. Jacques et al. 100

* e.g., Qt = -0.24 - 5.16*trend - 8.38*PDO - 10.02*PDO_{P2} - 10.19*SOI_{P2}

PDO: Observed versus 20th century simulations

Streamflow Simulations, 1900-2100

simulation

Ensemble Projection of Annual Flows

- The standard practice of running hydrological models with projected climate means is the best approach for assessing impacts of changes on land use and mean climate conditions on water balances and basin yield.
- However this approach **fails provide information on shifts in hydrologic extremes** because the variability is inherited from the model calibration; the forcing of interannual to decadal variability is not modeled.
- Considerable time and effort is given to the calibration and validation of environmental models but not to the **selection and validation of climate models**.
- Why are **climate models** not considered **environmental models**?